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Abstract
Background  About 40% of relapsed or non-responder tumors exhibit therapeutic resistance in the absence of a 
clear genetic cause, suggesting a pivotal role of intracellular communication. A deeper understanding of signaling 
pathways rewiring occurring in resistant cells is crucial to propose alternative effective strategies for cancer patients.

Methods  To achieve this goal, we developed a novel multi-step strategy, which integrates high sensitive mass 
spectrometry-based phosphoproteomics with network-based analysis. This strategy builds context-specific networks 
recapitulating the signaling rewiring upon drug treatment in therapy-resistant and sensitive cells.

Results  We applied this strategy to elucidate the BCR::ABL1-independent mechanisms that drive relapse upon 
therapy discontinuation in chronic myeloid leukemia (CML) patients. We built a signaling map, detailing - from 
receptor to key phenotypes - the molecular mechanisms implicated in the control of proliferation, DNA damage 
response and inflammation of therapy-resistant cells. In-depth analysis of this map uncovered novel therapeutic 
vulnerabilities. Functional validation in patient-derived leukemic stem cells revealed a crucial role of acquired FLT3-
dependency and its underlying molecular mechanism.

Conclusions  In conclusion, our study presents a novel generally applicable strategy and the reposition of FLT3, one 
of the most frequently mutated drivers of acute leukemia, as a potential therapeutic target for CML relapsed patients.

Keywords  Chronic myeloid leukemia, BCR:ABL1-independent resistance, Signaling pathways, Phosphoproteomics, 
Computational strategy, Drug repurposing, FLT3
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Background
Chronic Myeloid Leukemia (CML) is a clonal myelo-
proliferative disorder, molecularly defined by the pres-
ence of the Philadelphia chromosome, resulting from a 
reciprocal translocation between chromosomes 9 and 
22 [t(9;22)(q34;q11)] [1]. This translocation leads to the 
formation of the BCR::ABL1 chimeric protein, a consti-
tutively active tyrosine kinase that drives aberrant pro-
liferation and survival, promoting leukemogenesis [2]. 
Given the pivotal role of BCR::ABL1 in CML pathogen-
esis, tyrosine kinase inhibitors (TKIs), such as imatinib, 
were developed, markedly improving patient survival 
[3, 4]. However, TKI therapy fails in about 30% of newly 
diagnosed CML patients, due to different mechanisms of 
resistance [5]. TKI resistance mechanisms can be broadly 
classified as BCR::ABL1-dependent or BCR::ABL1-
independent [6]. CML non-responder patients with 
BCR::ABL1-dependent resistance are typically char-
acterized by the acquisition of point mutations in the 
kinase domain or overexpression of the oncogene [7] 
and can receive specific TKIs according to mutational 
assessment. In contrast, 50% or more of non-responder 
patients do not harbour BCR::ABL1 mutations and lack 
therapeutic strategies, as the basis of such BCR::ABL1–
independent resistance remains poorly understood [8–
10]. BCR::ABL1 independent resistance mechanisms also 
play a crucial role in leukemia stem cells (LSCs), which 
are intrinsically resistant to TKI therapy and hinder long-
term discontinuation, namely treatment-free-remission, 
in responder patients [11, 12]. In our study, we aim to 
elucidate the BCR::ABL1-dependent and -independent 
resistance mechanisms, with the ultimate goal of propos-
ing novel therapeutic strategies to counteract resistance 
and improve clinical outcomes of relapsed or unrespon-
sive CML patients. To achieve this, we developed and 
applied a novel, generally applicable strategy combining 
high-sensitive mass spectrometry (MS)-based (phospho)
proteomics with novel computational algorithms. By this 
strategy, we first derived two comprehensive BCR::ABL1-
dependent and BCR::ABL1-independent signaling maps, 
identifying novel players in imatinib response and deci-
phering the complex signaling pathways rewiring occur-
ring in CML resistant cells. Next, by integrating these two 
maps with the Druggability Score algorithm, we identified 
and validated promising drug targets killing resistant 
cells. Ex vivo validation in LSCs highlighted a crucial role 
of acquired FLT3-dependency in resistant CML models. 
Finally, our study provides insights into the mechanisms 
underlying imatinib response and resistance and identi-
fies FLT3-TKIs e.g. midostaurin as a potential effective 
therapeutic strategy for unresponsive patients.

Methods
Cell culture
K562 cell line was provided by courtesy of professor D. 
Barilà. LAMA84 cell line was obtained from DSMZ. 
K562-R cells were generated by exposure of K562 cells 
to increasingly higher concentration of imatinib dur-
ing a period of several weeks. The cells were cultured 
in RPMI 1640 medium (Hyclone, Thermo Scientific, 
Waltham, MA) supplemented with 10% heat-inactivated 
fetal bovine serum (ECS0090D Euroclone, Italy, MI ), 
100 U/ml penicillin and 100 mg/ml streptomycin (Gibco 
15140122), 1 mM sodium pyruvate (Sigma-Aldrich, 
St. Louis, Missouri, United States, S8636) and 10 mM 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) (Sigma H0887). Responders and non-responder 
patients derived primary blasts mRNA were provided by 
courtesy of professor P. Chiusolo.

Immunoblot analysis
K562 and K562-R cells were seeded at a concentration 
of 500.000 cells/ml and treated as indicated. After treat-
ments cells were centrifuged and washed in ice-cold PBS 
1x. Next, cells were lysed in ice-cold RIPA lysis buffer 
(150 mM NaCl, 50 mM Tris–HCl, pH 7.5, 1% Nonidet 
P-40, 1 mM EGTA, 5 mM MgCl2, and 0.1% SDS) supple-
mented with 1 mM PMSF, 1 mM orthovanadate, 1 mM 
NaF, protease inhibitor mixture 1x, inhibitor phosphatase 
mixture II 1x, and inhibitor phosphatase mixture III 1x 
and incubated for 30  min. Samples were centrifuged at 
13,000g for 30 min and supernatants were collected. The 
total protein concentration was determined using the 
Bradford reagent (Biorad, 5000006). Protein extracts were 
denatured and heated at 95  °C for 10  min in NuPAGE 
LDS Sample Buffer (Thermo Fisher Scientific, NP0007) 
and DTT as a reducing agent (NuPAGE Sample Reducing 
Agent) (Thermo Fisher Scientific, NP0004). Denaturated 
proteins were resolved using 4–15% Bio-Rad Mini-PRO-
TEAN TGX/CRITERION polyacrylamide gels (Bio-Rad 
4561084). Proteins were transferred to Trans-Blot Turbo 
Mini Nitrocellulose Membranes using a Trans-Blot 
Turbo Transfer System (Bio-Rad, 17001918). The nitro-
cellulose membranes were incubated in blocking solution 
(5% BSA, 0.1% Tween 20 in TBS 1x) at room temperature 
for 1 h. Saturated membranes were incubated overnight 
with primary antibodies (Table C) diluted in 5% BSA 
or 5% skimmed milk powder, depending on manufac-
turer instruction. HRP-conjugated secondary antibodies 
(Goat Anti-Mouse IgG (H + L)-HRP Conjugate 1:3000, 
BIORAD 1721011) were diluted in 5% skimmed milk 
powder, 0.1% Tween 20 in 1× TBS and used for the detec-
tion of the primary antibodies. Chemiluminescence was 
detected using Clarity Western ECL Blotting Substrates 
(Bio-Rad) and the Chemidoc (Bio-Rad). Band densities 
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were quantified using ImageJ and normalized to the load-
ing control.

Cell cycle analysis
Cells were treated with imatinib for 24 h at a concentra-
tion of 500.000 cell/ml. The following day 106 cells were 
collected from each sample and washed with ice-cold 
PBS. Cells were resuspended in 1 µg/ml DAPI (Thermo 
Scientific, #62248) and 0.2 mg/ml RNase (Thermo Scien-
tific, #12091021) PBS solution and incubated for 30 min 
before flow cytometry analysis. The fluorescence inten-
sity was detected using CytoFLEX S (Beckman Coulter). 
Fluorescence intensity was measured using a CytoFLEX 
S instrument (Beckman Coulter). Weekly quality control 
checks for the cytometer were performed using Cyto-
FLEX Daily QC Fluorospheres (Beckman Coulter 
B53230). Data acquisition was conducted using CytEx-
pert software (Beckman Coulter).

MTT assay
Cell viability was measured using the Cell Proliferation 
Kit I (MTT) (Roche, 11465007001). Cells were treated 
with drugs reported on Table B for 24 at a concentra-
tion of 50.000 cells/ml or 72  h at a concentration of 
10.000 cells/ml. 100  µl of cell suspension were seeded 
in technical triplicate in a 96 multiwell plate. After 24 h 
of treatment, 10 µl of MTT were added to the cells and 
incubated for 4 h at 37 ◦C. Solubilization Buffer was used 
to dissolve the formazan crystals during an overnight 
incubation. Finally, the plates were read at 595 nm using a 
microplate reader (Bio-Rad).

Real time quantitative PCR
5·106 cells were centrifuged and resuspended in 1  ml 
Trizol reagent (Thermo Fisher Scientific). After 5 minutes 
incubation at room temperature, 200 ul of ice-cold chlo-
roform and vigorously shaken for 15 seconds. Samples 
were centrifuged at 12000 xg for 15 minutes and aqueous 
supernatant containing RNA were collected. Next sam-
ples were additioned with 500 ul isopropanol and 10 µg 
of glycogen and incubated overnight at -20°C. The follow-
ing day samples were centrifuged at 12000 xg for 10 min-
utes and supernatant was descartes. Pellets were washed 
with 1 ml ice-cold ethanol 75% and centrifuged again at 
7500 xg for 5 minutes. Ethanol was allowed to evaporate 
and pellets were resuspended in RNase free water. Quan-
tification and purity of the samples was determined with 
NanoDrop Lite (Thermo Scientific). 1000 ng of RNA from 
each sample underwent retrotranscription. PrimeScript 
RT reagent Kit (Takara) was used following manufac-
turer’s instructions. Specific primers for the BCR::ABL1 
gene were designed (forward: 5’-​T​G​A​C​C​A​A​C​T​C​G​T​G​T​
G​T​G​A​A​A​C​T​C-3’; reverse: 5’-​T​G​A​C​C​A​A​C​T​C​G​T​G​T​G​T​
G​A​A​A​C​T​C-3’). RT-qPCR was performed using the SYBR 

Premix Ex Taq (Takara) kit and the QuantStudio®3 Real-
Time PCR instrument (Applied Biosystems). The fold 
changes in mRNA levels were normalized on actin gene 
expression. The comparative analysis of gene expression 
was evaluated by expressing the values as Log102−ΔCq.

Immunofluorescence analysis
To assess γH2AX modulation upon 1µM imatinib 24  h 
treatment, 5·106 cells were treated as indicated, washed 
in PBS and fixed in 4% PFA for 30 min. Next, cells were 
washed in PBS and permeabilized in a PBS + 0,1% Triton 
solution for 10 min. After the incubation time, cells were 
centrifuged at 6000 g for 5 min, washed in PBS and cen-
trifuged again at 10.000 xg for 5 min. Cells were blocked 
in a PBS + 2% BSA + 0,01% Tween20 solution for 1 h and 
then centrifuged at 10.000 xg for 5 min. Cells were incu-
bated with γH2AX primary antibody (CST 9718) for 1 h 
and washed three times in PBS + 0,01% Tween20. Next, 
cells were incubated with secondary antibody (Southern-
Biotech 4050-30) for 1  h and washed three times. Cells 
were stained with DAPI (Thermo Scientific #62248) for 
15  min, centrifuged at 6000 xg for 5  min and mounted 
for imaging. The experiment was performed in biological 
triplicate. Samples were quantified considering the per-
centage of γH2AX-positive cells (> 5 γH2AX foci) over 
the total number of cells.

Sample Preparation for proteomic and phosphoproteomic 
analysis
Cells were lysed in SDC lysis buffer additioned with 4% 
(w/v) SDC, 100 mM Tris -HCl (pH 8.5). Next, samples 
were boiled at 95° for 5  min and sonicated in Biorup-
tor for 10 cycles at high intensity 30s on/30s off. Protein 
concentration was determined by BCA assay. inStageTip 
(iST) method was used for proteome preparation [13]. 
Briefly, 50 µg of protein extract were diluted in 2% SDC 
buffer and 1% trifluoroacetic acid (TFA). SDBRPS tips 
were washed with (i) 100 µl acetonitrile (ACN), (ii) 100 µl 
of 30% methanol and 1% TFA and (iii) 150 µl of 0.2% TFA 
by centrifuging tips at 1000 xg for 3 min. Samples were 
loaded onto equilibrated columns and spin at 1000 xg for 
10 min. SDBRPS tips were washed with (i) 100 µl of 1% 
TFA in ethyl acetate, (ii) 100 µl of 1% TFA in isopropanol 
and (iii) 0.2% TFA. For protein elution, we used a buffer 
containing 80% ACN, 5% NH4OH in MilliQ water. Sam-
ples were centrifuged at 1000 xg for 4 min and concen-
trated by SpeedVac at 45° for ~ 45 min. Finally, samples 
were resuspended in 10 µl of a buffer additioned with 2% 
ACN and 0.1% TFA. EasyPhos workflow was used to pre-
pare phosphoproteomics samples as previously described 
[14]. Briefly, at least 750 µg of protein extract was diluted 
in 750  µl of ACN and 250  µl of EP enrichment buffer 
additioned with 36% TFA and 3mM KH2PO4. Samples 
were mixed at 2000 xg for 30 s to clear precipitates, then 
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centrifuged at 20.000 xg for 15  min and finally trans-
ferred in a 2  ml deep-well plate. TiO2 beads were used. 
For each sample, 12:1 (beads: protein) were weighed out 
and resuspended in EP loading buffer additioned with 
80% ACN and 6% (v/v) TFA. Activated TiO2 beads were 
added to each sample and incubated for 5 min at 40° C 
at 2000 rpm. Next, beads were centrifuged at 2000 xg for 
1  min and supernatants (non-phosphosites) were dis-
carded. The beads were resuspended in 500 µl of EP wash 
buffer, composed of 60% ACN and 1% TFA twice and 
then transferred to a clean tube/plate. Four additional 
washes with EP wash buffer were carried out mixing at 
2000  rpm for 3  s. Following the wash steps, the beads 
were resuspended in 75  µl of EP transfer buffer (80% 
ACN, 0.5% acetic acid), transferred onto C8 stage tips 
(double layer), and spun to dryness at 1000 xg for 5 min. 
Phosphopeptides were eluted in 30 µl of EP elution buf-
fer containing 200 µl of NH4OH and 800 µl of 40% ACN 
into PCR tubes. Immediately afterward, the samples were 
concentrated in a SpeedVac at 45  °C for 20 min. Mean-
while, SDBRPS tips (triple layer) were equilibrated using 
the following steps: (i) 100 µl ACN, (ii) 100 µl 30% metha-
nol and 1% TFA, and (iii) 150 µl 0.2% TFA. After comple-
tion of the SpeedVac, SDBRPS loading buffer (1% TFA 
in isopropanol) was added to the samples. Subsequently, 
phosphopeptides were loaded onto equilibrated SDBRPS 
StageTips and washed sequentially with (i) 100 µl 1% TFA 
in ethyl acetate (EtOAc), (ii) 100 µl of 1% TFA in isopro-
panol, and (iii) 150 µl of 0.2% TFA. After the wash steps, 
phosphopeptides were eluted into clean PCR tubes using 
a buffer containing 60% ACN and 5% NH4OH. Following 
another SpeedVac step at 45 °C for 30 min, phosphopep-
tides were resuspended in 10 µl of a buffer containing 2% 
ACN and 0.1% TFA.

Mass spectrometry analysis
The peptides and phosphopeptides underwent desalt-
ing using StageTips and were subsequently separated on 
a reverse-phase column (50  cm, packed in-house with 
1.9-mm C18-Reprosil-AQ Pur reversed-phase beads) 
(Dr. Maisch GmbH). For single-run proteome analysis, 
separation occurred over 120 min, while for phosphopro-
teome analysis, it extended to 140 min. Following elution, 
the peptides were subjected to electrospray ionization 
and analyzed via tandem mass spectrometry using an 
Orbitrap Exploris 480 instrument (Thermo Fisher Scien-
tific). The instrument operated by alternating between a 
full scan and multiple high-energy collision-induced dis-
sociation (HCD) fragmentation scans, resulting in a total 
cycle time of up to 1 s.

Proteome and phosphoproteome data processing
Raw files were analyzed using the Spectronaut software. 
MS/MS spectra were searched against the Homo sapiens 

UniProtKB FASTA database (September 2014), with an 
FDR of < 1% at the level of proteins, peptides and modi-
fications. Enzyme specificity was set to trypsin, allowing 
for cleavage N-terminal to proline and between aspartic 
acid and proline. The search included cysteine carbami-
domethylation as a fixed modification. Variable modi-
fications were set to N-terminal protein acetylation and 
oxidation of methionine as well as phosphorylation of 
serine, threonine tyrosine residue (STY) for the phospho-
protemic samples.

Proteome and phosphoproteome bioinformatics data 
analysis
Bioinformatic analysis was conducted within the Perseus 
software environment [15], where statistical analysis of 
both the proteome and phosphoproteome was executed 
on logarithmized intensities of quantified values across 
experimental conditions. Normalization of phospho-
peptide intensities consisted in subtracting the median 
intensity of each sample. To identify significantly modu-
lated proteins and phosphopeptides between conditions, 
a Student t-test with a permutation-based false discovery 
rate (FDR) cutoff of 0.05 and S0 = 0.1 was employed. Cat-
egorical annotation, such as KEGG pathways, was added 
in Perseus. To address multiple hypothesis testing, a Ben-
jamini-Hochberg FDR threshold of 0.05 was applied.

Imatinib treated K562 and K562-R vs. control network 
generation with SignalingProfiler 2.0
We run the SignalingProfiler 2.0 pipeline for K562 cells 
exposed to imatinib and K562-R cells to generate two 
networks linking BCR::ABL1 in inactive state (activity 
= -1) to 9 cancer hallmark phenotypes (Apoptosis, Pro-
liferation, G1/S transition, DNA repair, DNA fragmen-
tation, G1/S transition, Cell cycle block, Cell cycle exit, 
Autophagy).

Protein activity inference
Proteomic and phospho-proteomic data were processed 
to make them SignalingProfiler 2.0 compliant. Kinase 
activity was inferred by analyzing the modulation of their 
target phosphosites between sensitive (resistant) cells 
and control cells using the run_footprint_based_analysis 
with default parameters. Additionally, regulatory phos-
phosites’ modulation for kinases, transcription factors, 
and other signaling proteins was considered through the 
phosphoscore_computation function with default param-
eters. The resulting scores were combined to derive a 
final activity score. Protein abundance modulation in 
proteomic data was also considered as a proxy of activity.

For sensitive cells, K562 and LAMA84 multi-omic data 
were independently exploited to perform SignalingPro-
filer 2.0 protein activity inference step and the two results 
were merged. We selected 601 proteins that had the same 
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modulation in the two cell lines. We inferred 244 and 258 
kinases, 17 and 22 phosphatases, 214 and 261 transcrip-
tion factors, and 1684 and 2153 other phosphorylated or 
modulated in abundance signaling proteins, in imatinib 
exposed K562 and K562-R cells, respectively.

Network generation
For both cell lines, a signaling network was constructed 
using SignalingProfiler 2.0 prior knowledge network 
(PKN) with direct interactions. The PKN was filtered to 
retain only interactions involving proteins quantified in 
the (phospho)proteomics data using the preprocess_PKN 
function. A naïve network connecting BCR::ABL1 to 
inferred signaling proteins was generated using the two_
layer_naive_network with default parameters. Then, to 
keep in the naïve network only the interactions coherent 
with the proteins’ activity, we applied the SignalingPro-
filer 2.0 two-step multi-shot version of vanillaCARNI-
VAL optimization [16] with default parameters. The two 
networks were connected to 9 cancer hallmarks using the 
phenoscore_computation with default parameters. For 
K562 cells treated with imatinib only interactions from 
protein to phenotypes coherent with the phenotypic 
activity were retained using the optimize_pheno_network 
function with default parameters. We generated a net-
work of 200 nodes and 429 edges for K562 cells treated 
with imatinib and 710 nodes and 1895 edges for K562-R 
cells. The two networks are available on NDEX (K562: ​h​
t​t​p​​s​:​/​​/​w​w​w​​.​n​​d​e​x​​b​i​o​​.​o​r​g​​/​v​​i​e​w​​e​r​/​​n​e​t​w​​o​r​​k​s​/​​e​6​c​​7​8​2​6​​f​-​​4​a​6​​
d​-​1​​1​e​f​-​​a​7​​f​d​-​0​0​5​0​5​6​a​e​2​3​a​a, K562-R: ​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​d​e​x​​b​i​
o​​.​o​r​g​​/​v​​i​e​w​​e​r​/​​n​e​t​w​​o​r​​k​s​/​​a​0​c​​0​4​e​0​​2​-​​4​a​6​​e​-​1​​1​e​f​-​​a​7​​f​d​-​0​0​5​0​5​6​
a​e​2​3​a​a).

BCR::ABL1 dependent and independent functional circuits 
identification
To obtain BCR::ABL1 dependent functional circuit, the 
pheno_to_start_circuit of SignalingProfiler (v. 2) R pack-
age was used, selecting BCR::ABL1 as a starting node 
and maximum path length 7. To obtain BCR::ABL1 inde-
pendent functional circuit, the same function was used 
selecting 23 receptors with opposite regulation between 
K562-R and K562 cells or present only in K562-R net-
work, ‘Proliferation’ and ‘Apoptosis’ phenotypes as end 
points and maximum path length 6. The BCR::ABL1 
independent functional circuit accounted for 438 nodes 
and 987 edges. The network is available on NDEX at ​h​
t​t​p​​s​:​/​​/​w​w​w​​.​n​​d​e​x​​b​i​o​​.​o​r​g​​/​v​​i​e​w​​e​r​/​​n​e​t​w​​o​r​​k​s​/​​7​3​5​​2​3​f​e​​5​-​​4​a​
6​​f​-​1​​1​e​f​-​​a​7​​f​d​-​0​0​5​0​5​6​a​e​2​3​a​a. For visualization purposes, 
we selected only paths with maximum path length 5, 
obtaining a network of 60 nodes and 111 edges. The gen-
erated optimized networks were displayed on Cytoscape 
using the RCy3 package (v. 2.14.2). The ‘pheno_layout.
xml’ XML file provided within the SignalingProfiler 2.0 R 
package was used to set the network style in Cytoscape.

FDA-drug targets for hematological malignancies 
prioritization
Druggability score
For druggable targets prioritization we exploited the 
BCR::ABL1 independent functional circuit. We first 
removed nodes with incoherent incoming edges (CAR-
NIVAL activity different than 100 or -100) obtaining a 
network of 424 and 875 edges. For each node, we com-
puted a topology score considering: the network degree 
(i), the number of paths (maximum length = 10) inhibit-
ing apoptosis (ii) and activating proliferation (iii). To not 
take into account indirect interactions, for each node we 
excluded paths with length 1, when longer paths were 
present. Each score was loghartimized and normalized 
between 0 and 1 and the average was computed (topol-
ogy score). The topology score of each node was multiplied 
with the CARNIVAL activity score of the normalized 
between − 1 and 1, obtaining the Druggability Score. Pro-
teins with a positive Druggability Score are expected to 
induce more cell death in K562-R cells than in control 
cells. In contrast, proteins with a negative Druggability 
Score should exhibit the opposite effect. To identify the 
FDA-approved drug targets for hematological malig-
nancies we manually associated to the drugs of [16] the 
Primary Gene Name of the molecular target (FDA-drug 
targets catalogue) and 13 network nodes were extracted.

In vitro validation
For in vitro validation, we selected 8 network nodes 
(BCL2, JAK1, BTK, FLT3, PI3KCB and PI3KC3, DNMT1 
and DNMT3A) that had a positive Druggability Score and 
that were present in the FDA-drug targets catalogue. As 
a negative control, we also considered AKT1 node that 
had a negative Druggability Score. MTT viability assay 
was performed treating K562 and K562-R for 24 h with 
inhibitors reported in Table B. For each cell line the half 
maximal inhibitory concentration (IC50) was computed 
using IC50 calculator web tool (AAT Bioquest) and the 
opposite of logarithm was computed and compared with 
the Druggability Score.

Analysis of drug sensitivity of primary CML bone marrow 
samples
For drug sensitivity testing of primary patient material, 
bone marrow mononuclear cells (MNCs) from 3 differ-
ent patients were used. Patient samples were collected 
in accordance with the Declaration of Helsinki, follow-
ing informed consent. MNCs were thawed from a bio-
bank and stained for cell sorting using CD45-PE/Cy7 
(Biolegend, clone 2D1), CD34-BV510 (Biolegend, clone 
581), CD38-BV785 (Biolegend, clone HIT2), and CD26-
FITC (Biolegend, clone BA5b). Leukemic progenitor cells 
(LPCs, CD38 high /CD26 dim) and leukemic stem cells 
(LSCs, CD38 dim /CD26 high) were sorted (Fig. S4). 

https://www.ndexbio.org/viewer/networks/e6c7826f-4a6d-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/e6c7826f-4a6d-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/e6c7826f-4a6d-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/a0c04e02-4a6e-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/a0c04e02-4a6e-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/a0c04e02-4a6e-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/73523fe5-4a6f-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/73523fe5-4a6f-11ef-a7fd-005056ae23aa
https://www.ndexbio.org/viewer/networks/73523fe5-4a6f-11ef-a7fd-005056ae23aa
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Samples were cultured for 24  h in the absence or pres-
ence of midostaurin 300nM at 37 °C, 5% CO 2, and sub-
sequently analyzed using a CytoSMART™ automated cell 
counter (Corning), including Trypan Blue-based live/
dead discrimination.

CML patients RNA-seq analysis
RNA was extracted from peripheral blasts of 3 imatinib 
responder and 4 non responder CML patients (Table 
S8). Samples were obtained upon the patients’ informed 
consent. Briefly, RNA was prepared from PBMCs using 
the RNeasy Mini Kit (QIAGEN, Germany). The pel-
lets obtained from buffycoat were resuspended in the 
RLT buffer. We proceed with the addition of equal vol-
ume of 70% Ethanol (EtOH) to our already homogenized 
sample in RTL. It was spinned at ≥ 8000 x g for 15  s. 
700  µl of Buffer RW1 were added and the solution was 
spinned at ≥ 8000 x g for 15  s. It was emptied carefully, 
and 500 µl of RPE Buffer were added and the solution was 
spinned ≥ 8000 x g for 2  min. The column was emptied 
again and placed in a new tube and centrifuged at maxi-
mum power for 1 min to dry.

Library 
construction 
protocol

NEGEDIA Digital mRNA-seq research grade 
sequencing service 2.0 (Next Generation Diag-
nostic srl)

Library 
strategy

NEGEDIA Digital mRNA-seq v2.0

Data process-
ing step

Illumina Nova Seq 6000 base call (BCL) files were con-
verted in fastaq file through bcl2fastaq (v2.20.0.422).
Data was processed using nf-core/rnaseq v3.14.0 
[17] of the nf-core collection of workflows [18], utilis-
ing reproducible software environments from the 
Bioconda [19] and Biocontainers [20] projects. The 
pipeline was executed with Nextflow v23.10.1 [21].

NFkB targets analysis
The RNAseq analysis of LSCs and LPCs from 5 CML 
patients from the GEO database (GSE43754) was con-
ducted within the Perseus software environment [15]. To 
identify significantly modulated transcripts, a one sample 
Student t test with a permutation-based false discovery 
rate (FDR) cutoff of 0.07 and S0 = 0.1 was employed. To 
address multiple hypothesis testing, a Benjamini-Hoch-
berg FDR threshold of 0.05 was applied. To analyze the 
modulation of NFKB1 targets, we selected NFKB1 reg-
ulon in SignalingProfiler (v. 2.0) database combining 
SIGNOR and CollecTRI [22] information. We merged 
the NFKB1 regulon with significantly modulated tran-
scripts with an absolute fold-change higher than 1. The 
fold-change in each patient is reported in Fig. 6C.

Statistics
All experiments were independently replicated 
at least three times (n = 3). Data are expressed as 

means ± standard error (SEM). When comparing three 
or more groups, statistical analyses were conducted 
using either one-way or two-way analysis of variance 
(ANOVA). For comparisons between two groups, the 
unpaired t-test was employed, assuming a two-tailed dis-
tribution. Statistical significance was defined as follows: 
*p < 0.05; **p < 0.01; ***p < 0.001. Prism 7 (GraphPad) was 
utilized for all statistical analyses.

Results
The experimental strategy
To characterize the BCR::ABL1 independent signaling 
pathways and identify novel druggable targets, we devel-
oped an innovative multi-step strategy, which can be 
broadly applied to propose novel effective therapeutic 
strategies in cancer cells exhibiting therapeutic resistance 
in absence of clear genetic alterations. Below is a step-by-
step description of our strategy (Fig. 1A):

Step 1. Use MS-based (phospho)proteomics to in 
depth characterize the signaling pathways remodeling 
induced in therapy-resistant and sensitive cancer cells 
upon drug treatment.

Step 2. Leverage the network-based computational 
algorithm SignalingProfiler 2.0 [23] to analyze the newly 
generated phosphoproteomic dataset and obtain two 
signaling maps describing the molecular mechanisms 
underlying the drug response in therapy-resistant and 
sensitive cancer cells. By this step, we obtained two sig-
naling maps detailing the BCR::ABL1-dependent (ima-
tinib-treated sensitive cells vs. untreated sensitive cells) 
and -independent (untreated sensitive cells vs. untreated 
resistant cells) signaling pathways.

Step3. Employ the Druggability Score algorithm to 
identify and prioritize druggable nodes in the resistant 
signaling map based on their activation levels in therapy-
resistant cells and their centrality within the network 
map. In this step, FDA-approved drugs may be repur-
posed to eradicate resistant cells.

Step4. Validate the functional role of the top-ranking 
druggable nodes by treating therapy-resistant cancer cells 
with small molecule inhibitors targeting these nodes and 
assessing their viability. In our study, the functional sig-
nificance of the druggable nodes was validated in CML 
cell lines and patient-derived leukemic stem cells.

In our study, as a first step, we established a CML 
cell line model exhibiting imatinib resistance due to 
BCR::ABL1-independent mechanisms. Specifically, upon 
chronic imatinib exposure of K562 cells, we selected a 
persistent clone (K562-R) (Fig. 1B). Notably, the persis-
tence of these cells is accompanied by a drastic reduc-
tion of the BCR::ABL1 expression level and inactivation 
of its downstream proteins (Fig. 1C-D, S3F), without any 
impact on their cell cycle progression (Fig. 1E). Thus, 
K562-R cells exhibit BCR::ABL1-independent signaling 
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Fig. 1 (See legend on next page.)
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pathways promoting cell survival and can be used as an 
experimental model to study non-genetic mechanisms 
driving relapse in CML patients.

In depth phosphoproteomic analysis of Imatinib sensitive 
and resistant CML cells
The first step of our strategy involves the characteriza-
tion of the phosphoproteome profile of therapy-resis-
tant and sensitive cells. Thus, state-of-the-art MS-based 
(phospho)proteomics was employed to characterize the 
phosphoproteome of imatinib treated and untreated 
therapy-sensitive CML cell lines (K562 and LAMA84) 
and our newly established therapy-resistant CML cell 
line (K562-R) (Table S1 and S2). By this strategy, more 
than 7,000 proteins and 19,000 class I phosphosites were 
quantified in biological quadruplicates (Fig.  2A, Table 
A). Next, we investigated how the (phospho)proteome 
was remodelled in imatinib treated and resistant cells, by 
identifying significantly deregulated proteins and phos-
phosites using t-test analysis (FDR < 0.05). Specifically, 
we compared: (i) K562-Ima vs. K562 (control cells), (ii) 
LAMA84-Ima vs. LAMA84; and (iii) K562-R vs. K562. 
Imatinib treatment affects approximately 30% of the 
phosphosites and proteins in K562 and LAMA84 cell 
lines, while more than 70% of the phosphoproteome and 
the proteome (15,000 phosphosites and 5,000 proteins) 
is significantly modulated in therapy-resistant K562-R 
cells as compared to control cells (Fig. 2A). To note, the 
impact of imatinib on the (phospho) proteome is highly 
reproducible in K562 and LAMA84 cell lines (R = 0.7), 
indicating the reliability of our approach (Fig. 2B). Com-
parison analysis of the proteome and phosphoproteome 
layers revealed that only 20% of the significantly modu-
lated phosphosites are also consistently changed at the 
protein level, highlighting the relevance of phosphor-
ylation-based signaling events in driving the imatinib 
response (Fig.  2C, upper panels). In therapy-resistant 
K562-R cells, signaling pathways are drastically remod-
elled compared to control cells. Notably, 60% of the sig-
nificantly modulated phosphosites are also consistently 
altered at the protein level (Fig. 2C, bottom panel). Next, 
we investigated how the proteome and phosphoproteome 
rewiring in imatinib treated and resistant CML mod-
els impacted crucial biological processes by enrichment 
analysis. Proteins involved in metabolic processes, such 
as TCA, glycolysis/gluconeogenesis are significantly over-
expressed and hyperphosphorylated in both imatinib 

treated and resistant cells. Finally, in line with the pro-
apoptotic effect of imatinib, pro-survival, and prolifera-
tion signaling pathways, such as JAK/STAT, MAPK, and 
mTOR, are significantly downregulated through phos-
phorylation-based mechanisms only in imatinib-treated 
K562 and LAMA84 cells. Consistently, cell cycle-related 
proteins are down-regulated only in imatinib-treated 
sensitive models (Fig.  2D). Taken together, these obser-
vations indicate that the imatinib-induced response in 
LAMA84 and K562 is consistent and robust, and confirm 
the relevance of our cell lines as models to elucidate the 
BCR::ABL1-dependent and -independent proliferative 
pathways.

Characterization of BCR::ABL1-dependent signaling 
pathways
The second step of our strategy aims to generate two 
signaling maps detailing the BCR::ABL1-dependent and 
-independent signaling pathways. To this aim, we ana-
lyzed the newly generated phosphoproteomic datas-
ets with the network-based algorithm SignalingProfiler 
2.0. While in this paragraph we have described how 
BCR::ABL1-dependent pathways control key biological 
processes, the next one addresses the BCR::ABL1-inde-
pendent pathways.

By employing SignalingProfiler 2.0, we first inferred 
the activity of signaling proteins in imatinib-treated 
K562 and LAMA84 cells as compared to control cells. As 
detailed in Venafra et al. [23], protein activity modula-
tion is inferred through two complementary approaches. 
Footprint-based methods use substrate modulation as a 
proxy for the activity of upstream kinases or phospha-
tases. Additionally, the impact of hyperphosphoryla-
tion or dephosphorylation on specific protein residues 
is considered, expanding the analysis beyond kinases/
phosphatases to include transcription factors and other 
phosphorylated proteins. Additionally, in this work, pro-
tein abundance was also leveraged as a proxy for activity 
modulation.

As expected, the treatment similarly impacts the activ-
ity of kinases, phosphatases, and transcription factors 
in K562 and LAMA84 cells (R = 0.48, p = 2.2·10− 16) (Fig. 
S1A, Table S3). Imatinib treatment not only inactivates 
well-known ABL1 downstream targets (STAT5A, RPS6, 
CDKs) but also increases the activity of key kinases, such 
as ATM and NEK family members (e.g., NEK2, NEK5, 
NEK9), linking DNA damage pathways modulation to 

(See figure on previous page.)
Fig. 1   Experimental strategy and in vitro resistant model characterization. A. Schematic representation of the multi-step strategy. B. MTT viability assay. 
Sensitive cells (blue) and resistant cells (red) were exposed to increasing concentration of imatinib (0.1 µM, 0.25 µM, 0.5 µM, 1 µM and 5 µM) for 72 hours. 
The graph shows the percentage of absorbance at 595 nm normalized on control condition. C. Representative western blots of BCR::ABL1 activity status 
(Y412), MAPK and JAK/STAT canonical downstream pathways (p-STAT5 (Y694), p-ERK1/2 (T202/Y204)) in K562 and K562-R cells upon 24 h of 1 µM imatinib 
treatment. D. Real Time quantitative PCR was performed to measure BCR::ABL1 transcript levels in K562 and K562-R cells. Bar graph shows quantification 
of the BCR::ABL1 mRNA levels as Log102-ΔCq. E. Flow cytometry analysis of cell cycle progression of K562 and K562-R cells upon 24 h exposure to imatinib 
1 µM. The bar graph shows the percentage of cells in a specific cell cycle phase measured using DAPI staining
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BCR::ABL1 activity. Next, we generated the BCR::ABL1-
dependent signaling network. The resulting graph 
accounts for 200 nodes and 524 edges, suggesting a 
deep signaling rewiring induced by the drug. Interest-
ingly, the phenotypic inference indicates that imatinib 
activates apoptosis, DNA fragmentation, autophagy and 
repair, and inhibits cell cycle progression (e.g., G1/S 
transition) in both cell lines (Fig. S1B). To reduce the 
complexity of this map, we selected the functional cir-
cuits linking BCR::ABL1 to the predicted phenotypes 
(Fig.  3A). The network-based approach and the in vitro 
validation experiments align closely and recapitulate the 
well-characterized relations between BCR::ABL1 and 
its downstream signaling pathways (ERK1/2, STAT5 
and mTOR), and cell-cycle regulation (Fig.  3B-C, S3A-
B). While mTOR and its downstream targets, such as 
p70S6K, are dephosphorylated and inhibited upon ima-
tinib treatment, feedback loops hyperactivate AKT 
(Fig. 3B). In line with mTOR pathway inhibition, LC3-II 
and p62 abundance confirmed an increase in autophagy 
induction (Fig. 3D, S3E). The inspection of the imatinib-
dependent modulation of cell cycle reveals that crucial 
proteins, including CDKs, Rb, and ATM kinase are sig-
nificantly and consistently modulated at multiple regula-
tory layers in cell lines and patients (Fig. 3E) driving G1 
phase arrest with consequent inhibition of proliferation, 
as confirmed by functional assays (Fig. 1E and S1C, S3C). 
In line with the in silico activation of DNA fragmenta-
tion and repair phenotypes, we detected higher γH2AX 
levels in imatinib-treated cells (Fig. 3F. S3D). Altogether 
our data indicate that imatinib-dependent suppression of 
BCR::ABL1 triggers apoptosis by globally rewiring signal-
ing pathways through DNA damage induction and cell 
cycle block.

Unbiased identification of BCR::ABL1-independent 
signaling pathways
Here we aim to obtain a mechanistic picture of the 
BCR::ABL1-independent signaling remodeling. Thus, 
we employed our cell line models, namely K562-R and 
K562-Ima cells, wherein BCR::ABL1 is suppressed, 
through transcriptional and pharmacological mecha-
nisms, respectively. Interestingly, the two models display 
divergent behaviour as the first promotes cell survival, 
whereas the second triggers cell death. This offers the 
unprecedented opportunity to discover commonly 
regulated signaling axes, as well as compensative and 
divergent resistance mechanisms. First, we ran Signal-
ingProfiler 2.0 to derive the activity of 261 transcription 
factors, 280 kinases and phosphatases, and 2153 other 
signaling proteins in K562-R as compared to control 
cells (Table S4). As expected, we observe a poor cor-
relation between the inferred activity in resistant cells 
with respect to imatinib-treated cells (Fig. S2A-B). Most 

of the proteins (2470/3005 proteins), including PLK1, 
LYN, and MYC, are oppositely regulated, supporting 
the hypothesis that proliferation and survival of K562-R 
cells rely on BCR::ABL1-independent mechanisms. Next, 
we employed SignalingProfiler 2.0 to derive the K562-R 
specific network. This resulted in a graph with 700 pro-
teins and 10 phenotypes linked by 1985 interactions, 
with 20% of phosphorylation events experimentally 
quantified (Table S4), revealing a huge reorganization in 
BCR::ABL1-depleted resistant cells. As quality control, 
we compared our results with genes previously impli-
cated in imatinib resistance by an independent genome-
wide CRISPR-Cas9 screening [24]. Remarkably, 70% of 
the hits are consistently down-regulated and connected 
in the network (Fig. S2C), supporting the ability of our 
network-based approach to identify drug resistance 
pathways. Next, we compared the BCR::ABL1 depen-
dent network with the newly generated K562-R specific 
map. We observe that BCR::ABL1 downstream signal-
ing effectors, namely STAT5A and CDK1/4, are equally 
modulated in both models (Fig. S2D), suggesting the 
persistence of mechanisms associated with the inhibi-
tion of BCR::ABL1. To identify BCR::ABL1 independent 
pro-proliferative molecular mechanisms, we extracted 
the subnetwork downstream of receptors oppositely 
modulated in K562-R and imatinib-treated K562 cells 
(Fig. S2E), and impacting on proliferation and apoptosis 
(Fig.  4A, Table S5). The BCR::ABL1-independent spe-
cific subnetwork as well as validation assays, indicate a 
complex rewiring of the mTOR pathway. While mTOR is 
down-regulated, the activity of its canonical targets (e.g. 
P70S6K) as well as the abundance of the upstream PI3K 
kinase (p85α, regulatory subunit) is increased in K562-R 
as compared to control cells (Fig. 4B, S3G). As revealed 
by increased activity of BCL2 and inhibition of TP53 and 
BID, the apoptotic pathway is suppressed. Also, tran-
scription factors MYC and RELA appear consistently 
regulated by in silico prediction and experimental vali-
dation (Fig.  4D-E, S3H). Interestingly, both oncogenic 
kinases JAK1 and FLT3 are up-regulated at protein and 
phosphorylation levels (Fig.  4C-F, S3H). Indeed, both 
FLT3 and JAK1/2 are frequently mutated in haematologi-
cal disorders and targeted by drugs currently approved in 
clinics [25]. Taken together, these observations suggest 
that several signaling proteins, including JAK1 and FLT3, 
promote cell proliferation in absence of BCR::ABL1, rep-
resenting promising drug targets.

Repurposing FDA-approved drugs to eradicate resistant 
CML cells by using the druggability score algorithm
To unbiasedly identify druggable targets killing K562-R 
cells, we implemented the Druggability Score algo-
rithm (Fig. 5A). This method ranks each node within the 
BCR::ABL1 independent network based on biological 
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and network topology-based criteria: (i) its activa-
tion level in K562-R cells; (ii) its functional relevance 
for K562-R survival quantified by the number of paths 
impacting apoptosis and proliferation; (iii) its number 

of connections (degree centrality) (Table S6). Proteins 
with a positive Druggability Score are expected to induce 
greater cell death in resistant cells compared to control 
cells upon inhibition, whereas proteins with a negative 

Fig. 2 (See legend on next page.)
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Druggability Score should exhibit opposite effect. Using 
this approach, we identified 194 and 230 proteins with 
positive and negative Druggability Score, respectively. 
To prioritize translationally relevant targets, we focused 
on proteins with FDA-approved inhibitors already in use 
for hematological malignancies [25], thereby facilitating 
potential drug repurposing for resistant CML. From the 
424 ranked model proteins, we selected eight candidates 
with positive Druggability Score for experimental vali-
dation: FLT3, JAK1, BTK, PIK3CB, PIK3C3, DNMT3A, 
DNMT1, and BCL2 (Fig.  5B). As negative control, we 
also included AKT, whose Druggability Score is negative. 
FDA-approved inhibitors of these eight proteins were 
used to treat resistant and sensitive K562 cells, and cell 
viability was assessed by MTT assay (Fig.  5C). Our in 
vitro results closely align with the prediction: drugs with 
a positive Druggability Score induce greater cell death in 
resistant cells as compared to sensitive cells. As expected, 
pharmacological inhibition of AKT leads to higher cell 
death in sensitive cells than in resistant ones. Overall, 
these findings validate the Druggability Score as a reliable 
tool for identifying potential therapeutic targets.

Pharmacological Inhibition of FLT3 kills patient-derived 
leukemic stem cells
Our in vitro cell viability assay shows that FLT3 inhibi-
tion by two different drugs (quizartinib and midostau-
rin) is the most effective strategy for eradicating resistant 
CML cells (Fig. S2F). Prompted by these findings, we 
investigated whether pharmacological suppression of 
FLT3 could kill leukemic stem cells (LSCs), which are 
intrinsically resistant to BCR::ABL1 inhibition [26]. LSCs 
and leukemic progenitor cells (LPCs), isolated from three 
CML patients, were FACS-sorted (Fig. S4) and treated 
with midostaurin for 24  h, followed by cell viability 
assessment. Pharmacological suppression of FLT3 more 
effectively killed LSCs than LPCs (Fig.  6A, TableS7). 
In agreement with these results, we found that FLT3 
was not only upregulated in K562-R cells at the pro-
tein and phosphorylation levels (Fig. 4C), but also at the 
mRNA level in LSCs as compared to LPCs, as revealed 
in an independent transcriptome dataset of a cohort 
of CML patients [27] (Fig.  6B). We next evaluated the 
FLT3 expression level in a small cohort of six responders 

and non responders CML patients. Our analysis indi-
cated that FLT3 expression is elevated in non-responder 
patients compared to responders, although this differ-
ence did not reach statistical significance likely because of 
the limited cohort size (Fig. S2G). Of note, our results are 
consistent with a previously published CML patient tran-
scriptome dataset [28] (Fig. S2H). Next, we investigated 
the molecular mechanisms underlying the FLT3-depen-
dent survival of TKI resistant cells. In depth analysis of 
our BCR::ABL1-independent network map revealed that 
FLT3 may drive cell proliferation and survival of TKI 
resistant cells via NFkB (Fig. 4A), which is predicted to be 
hyperactivated. Thus, we investigated the role of NFkB in 
LSCs resistance, by leveraging the transcriptome dataset 
of LSCs and LPCs derived from five CML patients [27]. 
As reported in Fig. 6C, NFkB is up-regulated in LSCs, as 
revealed by the significant over-expression of its target 
genes, with only one exception. In conclusion, our study 
reveals that the FLT3-NFkB signaling axis is a driver of 
the BCR::ABL1-independent resistance, promoting pro-
liferation and survival of leukemic stem cells. Finally, 
we propose that midostaurin treatment can be an effec-
tive alternative strategy for non-responders and relapsed 
CML patients, which lack BCR::ABL1 genetic alterations 
(Fig. 6D).

Discussion
Imatinib, known as the “magic bullet”, thanks to its abil-
ity to shut-down BCR::ABL1 activity, has revolutionized 
the treatment landscape of CML. However, tyrosine-
kinase inhibitor (TKI) therapy fails in about 30% of newly 
diagnosed CML patients, which develop different mech-
anisms of therapy resistance [5]. Additionally, approxi-
mately 50% of CML responder patients do not achieve 
treatment-free remission due to difficulty in completely 
eradicating LSCs, which are intrinsically resistant to TKIs 
and are the reservoir for disease persistence [29]. Half 
of these patients do not show mutations in BCR-ABL1, 
lacking effective treatment options. This study aims to 
address that gap. By combining MS-based (phospho)pro-
teomics, SignalingProfiler, and a newly developed algo-
rithm (Druggability Score), we discovered that resistant 
leukemic stem cells rely on the activity of FLT3 kinase. 
These observations pose complex therapeutic questions: 

(See figure on previous page.)
Fig. 2  Phosphoproteomics analysis and functional characterization of sensitive and resistant CML models upon imatinib exposure. A. Quantification 
coverage of phosphopeptides and proteins. For K562 and LAMA84 cells perturbed by 24 h of imatinib 1 µM treatment, significantly modulated analytes 
(t test, S0 = 0.1, FDR < 0.05) are reported in violet (left panel). For K562-R cells compared to K562 cells, significantly modulated analytes (t test, S0 = 0.1, 
FDR < 0.05) are reported in green (right panel). B. Scatterplots showing the Pearson correlation coefficients between the imatinib-dependent changes 
at the phosphoproteome and proteome levels of K562 cells as compared to LAMA84 cells. Proteins/phosphosites significantly modulated by imatinib, in 
both K562 and LAMA84 cell lines, are represented in blue. R indicates Pearson correlation considering all proteins/phosphosites (black) or only proteins/
phosphosites significantly modulated in both cell lines (red). C. Pie charts showing the proportion of phosphopeptides consistently modulated by ima-
tinib (upper panels) or in K562-R cells at their phosphorylation and protein levels. D. Scatterplots representing gene ontology enrichment analysis com-
paring sensitive cells (K562 and LAMA84) upon imatinib treatment with resistant cells (K562-R), at the proteome (upper panel) and phosphoproteome 
(lower panel) levels
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for TKI responders, how can we completely eradicate 
leukemic stem cells? For pan TKI non-responders, what 
are alternative therapies that can be employed to treat 
CML? To address these questions, we performed a large-
scale integrated analysis, combining state-of-the-art mass 

spectrometry-based phosphoproteomics of imatinib 
responsive and unresponsive cell lines with transcrip-
tomic studies of responsive and unresponsive patient-
derived primary blasts and a network-based approach. 
Hence, we obtained a comprehensive description of the 

Fig. 3   Characterization of BCR::ABL1-dependent mechanisms in sensitive cells. A. Functional submodel extracted from SignalingProfiler 2.0 output link-
ing BCR::ABL1 to cellular phenotypes modulated upon imatinib treatment. B. Representative western blots of PI3K/AKT/mTOR axis activity upon 24 h of 
1 µM imatinib treatment. C. Representative western blots of BCR::ABL1 activity status, MAPK and JAK/STAT canonical downstream pathways upon 24 h of 
1 µM imatinib treatment. D. Representative western blots showing expression levels of key autophagy regulators, such as p62 and LC3B perturbed by 90 
minutes of imatinib 1 µM treatment
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BCR::ABL1 dependent and independent pro-survival 
signaling mechanisms. With more than 25,000 phospho-
sites and 8,000 proteins accurately quantified in imatinib 
treated and resistant cell lines, our large-scale multi-
layered dataset represents an unprecedented resource 
for the scientific community [30, 31]. Imatinib’s impact 
on the global phosphoproteome has been characterized 
by few studies [32–34]. Consistent with our findings, 
such datasets revealed that imatinib treatment signifi-
cantly influences key signaling pathways (e.g., MAPK, 
JAK/STAT, PI3K/AKT) and crucial biological processes, 

including autophagy modulation and DNA damage 
response.

By employing our in-house implemented SignalingPro-
filer 2.0 pipeline, we derived the molecular paths through 
which BCR::ABL1 controls crucial phenotypes including 
cell cycle, autophagy, protein synthesis, and DNA dam-
age [35–38]. Our strategy offered an in-depth descrip-
tion of imatinib-dependent modulation of cell cycle, as 
most of its regulators were coherently measured at pro-
teome, transcriptome, and activity levels, in cell lines and 
in patient-derived primary blasts. We acknowledge that 

Fig. 4   Characterization of BCR::ABL1-independent mechanisms in resistant cells. A. Functional submodel extracted from BCR::ABL1 independent-spe-
cific subnetwork reporting paths going from 10 alternative receptors oppositely modulated in imatinib K562-R and K562 cells exposed to imatinib to 
apoptosis and proliferation phenotypes. B. Representative western blots of PI3K/AKT/mTOR axis activity upon 24 h of 1 µM imatinib treatment in control 
cells and K562-R cells. C-D. Representative western blot of control cells and K562-R cells showing phosphorylation status and protein abundance of FLT3 
receptor (C) and RELA protein (D) upon imatinib treatment. Both panels were obtained from the same gel and divided for aesthetic purposes of the figure. 
E-F. Representative western blot of control cells and K562-R cells showing phosphorylation status and protein abundance of MYC transcription factor (E) 
and JAK1 kinase (F) upon imatinib treatment. Both panels were obtained from the same gel and divided for aesthetic purposes of the figure
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imatinib can inhibit unintended protein targets (off-tar-
get proteins), potentially affecting the interpretation of 
our signaling network analysis. To ensure the specific-
ity of our findings, we thoroughly evaluated 13 reported 
imatinib off-target proteins based on three studies (Table 
S9) [39–41]. Our data showed that while some of these 
off-targets were significantly modulated at the (phospho)
proteome level only in K562 or LAMA84 cells, not meet-
ing our criteria of inclusion in the BCR::ABL1-dependent 
signaling network, others (e.g., DDR1, DDR2, MRLC2) 
were not detected in our systems. Overall, these obser-
vations suggest that our network-based approach mainly 
captures BCR::ABL1-specific signaling pathways, rather 
than broader off-target effects of imatinib.

Next, we aimed at narrowing down alternative thera-
peutic strategies overcoming TKI resistance and eradicat-
ing LSCs. The comparison between resistant and control 
cells revealed a huge remodeling of crucial processes at 
both the proteome and phosphoproteome regulatory lay-
ers. We integrated our data with SignalingProfiler 2.0 and 
derived the BCR::ABL1-independent signaling network. 
Interestingly, crucial membrane receptor kinases, includ-
ing FLT3, EGFR, GRK2 and TNFR are hyperactive in the 

newly generated resistant network and are potentially 
implicated in sustaining pro-proliferative pathways in 
absence of BCR::ABL1.

Thus, the generated maps not only provide a com-
prehensive description of the molecular mechanisms 
implicated in TKI-resistance, but can be leveraged to 
unbiasedly and systematically rank druggable targets. 
Indeed, we implemented the Druggability Score, a gen-
erally applicable algorithm which repurposes FDA-
approved drugs, by prioritizing nodes, according to their 
topological properties and activation levels in resistant 
models. This strategy allowed us to pinpoint and in vitro 
validate BCL2, JAK1, BTK, FLT3, PI3KCB, PI3KC3, 
DNMT1, and DNMT3A as candidate targets. Interest-
ingly, a recent study also identified BCL2 and JAK1 as 
key proteins involved in TKI resistance [42], suggesting 
the reliability of our strategy. In our analysis, the FLT3 
inhibition by two commonly used FDA approved drugs 
(midostaurin and quizartinib) emerged as the most effec-
tive solution to eradicate resistant cells.

FLT3 is a tyrosine-kinase receptor frequently mutated 
in hematological disorders and associated with dismal 
prognosis [43]. Remarkably, we and others observed that 

Fig. 5   Identification of new druggable targets and repurposing of FDA-approved drugs A. Druggable targets prioritization strategy. B. Scatterplot show-
ing drug targets ranked according to the Druggability Score. C. MTT assay on K562 and K562-R cells exposed for 24 h at different concentrations of 
FDA-approved inhibitors of prioritized targets. MK-2206 (AKTi) was used as a negative control. The graphs show the percentage of absorbance at 595 nm 
normalized on control condition. The reported statistical significance is between K562 and K562-R cells at the same experimental condition
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FLT3 is upregulated at multiple levels in different TKI 
resistance models of CML: (i) protein abundance and 
activity in K562-R cell line; (ii) transcript level in blasts 
derived from an independent small cohort of TKI non-
responders patients profiled in this study; (iii) transcript 
level in blasts derived from a large cohort of blast-phase 
patients [28]; and (iv) transcript level in patient-derived 
leukemic stem cells [27]. These observations prompted 
us to investigate the effect of midostaurin treatment 
on LSCs. Notably, pharmacological suppression of 
FLT3 effectively killed LSCs as compared to leukemic 
progenitors.

Altogether, these results indicate an acquired FLT3-
dependency in resistant CML models. Mechanistically, 
FLT3 has been implicated in TKI resistance through the 
JAK-STAT axis [44]. However, we and others show that 
JAK suppression has a mild impact on triggering cell 

death in K562-R and in patient-derived LSCs [42], sug-
gesting alternative FLT3-mediated axes. Our results sug-
gest the potential implication of the NFkB transcription 
factor in FLT3-dependent TKI resistance in leukemic 
stem cells.

Conclusions
Rewiring of key signaling pathways enables cancer cells to 
persist therapeutic treatments driving tumor progression 
and ultimately leading to relapse. Here we propose a novel 
generally applicable approach that integrates MS-based 
(phospho)proteomics and network-based computational 
pipelines. By this strategy, we generated two comprehen-
sive maps depicting the BCR::ABL1-dependent and inde-
pendent signaling networks. Notably, we discovered that 
therapy-resistant CML cells rely on FLT3, one of the most 
frequently mutated drivers of leukemia, for survival. In 

Fig. 6  LSCs rely on FLT3-NFkB axis for proliferation and survival A. LPCs (CD38+) and LSCs (CD26+) were sorted and exposed to midostaurin for 24 
h. Viability assay was performed by trypan blue exclusion. B. Quantification of FLT3 in LPCs and LSCs from RNAseq analysis obtained from GEO data-
set (GSE43754). C. Heatmap showing transcript levels of NFKB targets in LSCs compared to LPCs from RNAseq analysis obtained from GEO dataset 
(GSE43754). D. Graphic representation of how LSCs rely on the FLT3-NFkB signaling axis for proliferation and survival
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conclusion, our findings provide insights into non-genetic 
mechanisms driving chronic myeloid leukemia resistance.
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